

Journal of Fluorine Chemistry 107 (2001) 107-112

www.elsevier.com/locate/jfluchem

Synthesis of fluorinated pyrazole derivatives from β-alkoxyvinyl trifluoroketones

Li-ping Song^b, Qian-li Chu^a, Shi-zheng Zhu^{a,*}

^aShanghai Institute of Organic Chemistry, Chinese Academy of Sciences, 354 Fenglin Road, Shanghai 200032, PR China

^bDepartment of Chemistry, Shanghai University, Shanghai 201800, PR China

Received 11 July 2000; accepted 16 September 2000

Abstract

1,1,1-Trifluoro-4-ethoxy-3-butene-2-one, 3-trifluoroacetyl-3, 4-dihydro-2H-pyran or furan reacted readily with pentafluorophenylhydrazine or per(poly)fluoroacectylhydrazine $R_fCO-NHNH_2$ (R_f : BrCF₂, C_3F_7) to give *N*-substituted-5-hydroxy-5-trifluoromethyl heterocycles $Y-N-N=CH-CH(R)C(OH)CF_3$ (Y: H, Ar_f or R_fCO), which were dehydrated by treatment with P_2O_5 or SOCl₂ to form *N*-substituted 5-trifluoromethyl pyrazoles $Y-N-N=CH-C(R)=CCF_3$ (Y: H, Ar_f or R_fCO) in good yields.

© 2001 Elsevier Science B.V. All rights reserved.

Keywords: β-Alkoxyvinyl trifluoromethylketone; Pentafluorophenylhydrazine; Per(poly)fluoroacectyl-hydrazine; Fluorinated pyrazole derivatives

1. Introduction

α,β-Unsaturated ketones with a trifluoromethyl substituent represent interesting building blocks for the synthesis of trifluoromethyl containing compounds, especially heterocyclic systems, which often show high biological activities [1–3]. In recent years, the synthesis of fluorinated *N*-heterocyclic compounds have drawn much more attention, the literature has reported a series of CF₃-substituted pyridines, pyrazoles and quinolines obtained from the reactions of β-ethoxyvinyl-trifluoromethyl ketone or diethylaminomethylene hexafluoromethylacetone Et₂NCH=C(COCF₃)₂ with the corresponding nitrogen nucleophiles [4–6], thus:

Jones et al. [7] have reported $\underline{2}$ reacted with hydrazine gave 3-(3-trifluoromethyl-1H-pyrazol-4-yl)propanol and 2-(3-trifluoromethyl-1H-pyrazol-4-yl)ethanol, respectively.

We have also worked with the $\beta\text{-alkoxyvinyltrifluoro-}$ methyl ketones and found that they are sensitive to

^{*} Corresponding author.

^{0022-1139/01/\$ –} see front matter 2001 Elsevier Science B.V. All rights reserved. PII: S 00 2 2 - 1 1 3 9 (00) 00 3 4 8 - 1

nucleophilic attack, and in some case the products are heterocyclic products containing trifluoromethyl or trifluoroacetyl groups [8].

In continuation of our work on these reactive fluorinated vinylketones we recently found that they reacted readily with hydrazine derivatives to form fluorinated pyrazole derivatives. Herein, we report on this simple method for the preparation of 5-trifluoromethyl pyrazoles from the readily available β -alkoxyvinyltrifluoromethyl ketones.

2. Results and discussion

1,1,1-Trifluoro-4-ethoxy-3-butene-2-one EtOCH=CH-COCF₃ <u>1</u>, 3-trifluoroacetyl-3,4-di-hydro-2H-pyrane $CH_2CH_2CH_2OCH=CC(O)CF_3$ <u>2b</u> reacted smoothly with phenylhydrazine in ethanol to give the corresponding trifluoromethyl substituted pyrazoles. The undehydrated product 4,5-dihydro-1-phenyl-5-(trifluoromethyl)-1H-pyrazol-5-ol was also synthesized in high yield [9] and shows the reaction occurred via two steps.

However, under the same reaction condition treatment $\underline{1}$ or $\underline{2}$ with pentafluorophenyl-hydrazine or tetrafluorophenyl-hydrazine did not give the expected *N*-fluorinated phenyl

pyrazole. For example: the product obtained from the reaction of <u>1</u> with C₆F₅NHNH₂ is a stable colorless solid. It is readily crystallized from CH₂Cl₂ and was characterized (by spectroscopic data and X-ray diffraction analysis) as C₆F₅N-N=CHCH₂C(OH)-CF₃ <u>5</u>. In the ¹⁹F NMR spectrum the chemical shift of the CF₃ is at -79.9 ppm indicating that this CF₃ group is bonded to a saturated carbon atom. For compounds <u>3</u> or <u>4</u> in which the CF₃ group is bonded to a carbon-carbon double bond, the chemical shift of the CF₃ group is at -54.5 and -55.6 ppm, respectively. The molecular structure of <u>5</u> is shown in Fig. 1. Selected bond angles and bond lengths are summarized in Table 1.

The differences between the reaction of $C_6H_5NHNH_2$ and $C_6F_5NHNH_2$ with <u>1</u> should been due to the different basicities of $C_6H_5NHNH_2$ and $C_6F_5NHNH_2$. In the case of $C_6F_5NHNH_2$ or $HC_6F_4NHNH_2$ it give the undehydrated products, thus:

Compounds <u>6</u> and <u>8a</u> were identified by ¹H NMR spectroscopy (400 MHz) and by other techniques as appropriate. For example, the ¹H NMR spectrum of <u>6</u> displayed the dihydropyrazole 4–CH₂ protons as an AB system (doublets at δ_A 3.49 and δ_B 3.33 with the geminal coupling constant J = 19), which corresponds with the work of Singh et al., reported previously [10].

Fig. 1. Molecular structure of 5.

Reactions of <u>1</u> with $BrCF_2CONHNH_2$ in ethanol are straightforward yielding 5-trifluoromethyl-stubstituted pyrazoles:

For the formation of compound <u>9</u>, a possible reaction path was proposed as follows:

other cases a dehydration process with P_2O_5 or $SOCl_2$ is needed.

3. Experimental

Melting points were measured on a Temp-Melt apparatus and are uncorrected. Solvents were dried before use. ¹H NMR and ¹⁹F NMR spectra were recorded on a Varian-360 l instrument or Bruker DRX-400 spectrometer with TMS and TFA ($\delta_{CFCl_3} = \delta_{TFA} + 76.8$ ppm) as the internal and external standards and the upfield as negative. IR spectra were obtained with an IR-440 Shimadzu spectrophotometer. Lower resolution mass spectra and high resolution mass

But when <u>1</u> or <u>2</u> were treated with $C_3F_7CONHNH_2$ the products are: $C_3F_7C(O)N-N=CH-CH(R)-C(OH)CF_3$.

Treatment of compounds <u>**7b**</u> and <u>**8b**</u> with P_2O_5 or PCl_3 gave. The corresponding dehydrated products *N*-substituted 5-trifluoromethyl pyrazoles:

$$\begin{array}{c} \underset{R}{\text{Ho}} \subset F_{3} \\ \text{Ar}_{f} - N \\ N \end{array} \xrightarrow{R} \begin{array}{c} \underset{R}{P_{2}O_{5}} \\ \hline \end{array} \xrightarrow{CHC \ b} \end{array} \xrightarrow{R} \begin{array}{c} \underset{R}{\text{CF}_{3}} \\ \text{Ar}_{f} : C_{6}F_{5} \\ \text{Ar}_{f} : C_{6}F_{5} \\ \hline \end{array} \xrightarrow{R} \begin{array}{c} \underset{R}{\text{(CH}_{2})_{3}OH} \\ \text{Ar}_{f} : P - HC_{6}F_{4} \\ R : (CH_{2})_{3}OH \\ \hline \end{array} \xrightarrow{13}$$

Under the same reaction conditions, however, the compound <u>12b</u> did not form the eliminated product <u>15</u>. Treatment of compound <u>12b</u> with SOCl₂ and pyridine gave. The corresponding dehydrated product *N*-substituted 5-trifluoromethyl pyrazole:

$$C_{3}F_{7}CO-N$$

$$N$$

$$HO$$

$$CF_{3}$$

$$C_{3}F_{7}CO-N$$

$$N$$

$$HO$$

$$CF_{3}$$

$$C_{3}F_{7}CO-N$$

$$N$$

$$On$$

$$OH$$

$$15$$

$$(n=2)$$

$$12b$$

In summary, a series of new fluorinated pyrazole derivatives are prepared from the reaction of β -alkoxyvinyltrifluoromethyl ketone with hydrazine derivatives such as C₆H₅NHNH₂, Ar_fNHNH₂ and R_fCONHNH₂. In some cases this reaction gave directly the pyrazole product, in spectra (HRMS) were obtained on a Finnigan GC-MS 4021 and Finnigan MAT-8430 instrument, respectively. The X-ray structure analysis was performed with a Rigaku/AFC 7R Diffractometer. Elemental analyses were performed by this Institute. Compounds $\underline{1}$ and $\underline{2}$ were prepared according to the literature methods [12,13].

3.1. Reaction of $\underline{1}$ with hydrazine derivatives general procedure

1,1,1-Trifluoro-4-ethoxy-3-butene-2-one (5 mmol) was added dropwise into a 50 ml flask containing a solution of hydrazine (5 mmol) and EtOH (30 ml). After additions

Table 1 Selected bond lengths (Å) and bond angles (°) of compound $\underline{5}$

Bond length (Å)	
N(1)–N(2)	1.423 (4)
N(2)–C(7)	1.266 (4)
C(7)–C(8)	1.499 (5)
C(8)–C(9)	1.538 (5)
C(9)–N(1)	1.473 (4)
N(2)–C(6)	1.419 (4)
C(9)–C(10)	1.520 (5)
C(9)–O	1.399 (4)
Bond angle (°)	
C(9)–N(1)–N(2)	109.8 (3)
N(1)-N(2)-C(7)	108.8 (3)
N(2)-C(7)-C(8)	114.7 (3)
C(7)–C(8)–C(9)	101.6 (3)
C(8)–C(9)–N(1)	102.7 (4)
C(8)–C(9)–C(10)	112.4 (3)
N(1)-C(9)-C(10)	108.8 (3)
O-C(9)-C(10)	109.4 (3)

Table 2		
Preparation of fluorinated	pyrazole	derivatives

Entry	Reactants	Reaction condition	Product	mp (°C)	Yield(%)
1	$1 + C_6H_5NHNH_2$	EtOH, reflux, 24 h	3	_a	79
2	$\overline{1} + C_6 F_5 NHNH_2$	EtOH, reflux, 24 h	5	130-132	80
3	$1 + \mathrm{HC}_{6}\mathrm{F}_{4}\mathrm{NHNH}_{2}$	EtOH, rt, 24 h	6	140-142	72
4	$1 + BrCF_2CONHNH_2$	EtOH, rt, 24 h	9	47–48 ^b	78
5	$\overline{1}$ +BrCF ₂ CONHNH ₂	DMSO, rt, 24 h	9	47–48 ^b	73
6	$1 + C_3 F_7 CONHNH_2$	EtOH, rt, 24 h	11	56-58	62
7	$\overline{2a} + C_6 F_5 NHNH_2$	EtOH, reflux, 24 h	7a	134-136	71
8	$\overline{2a} + HC_6F_4NHNH_2$	EtOH, reflux, 24 h	8a	130-132	70
9	$\overline{2a}$ + BrCF ₂ CONHNH ₂	EtOH, reflux, 24 h	10a	114–116 ^c	66
10	$\overline{2a} + C_3F_7CONHNH_2$	EtOH, reflux, 24 h	12a	128-130	55
11	$\mathbf{2b} + C_6H_5NHNH_2$	EtOH, reflux, 24 h	4 (2b)	_a	36 (40)
12	$2\mathbf{b} + C_6F_5NHNH_2$	EtOH, reflux, 24 h	7b	122-124	46
13	$\overline{\mathbf{2b}} + \mathrm{HC}_{6}\mathrm{F}_{4}\mathrm{NHNH}_{2}$	EtOH, reflux, 24 h	8b	172-174	55
14	$2\mathbf{b}$ + BrCF ₂ CONHNH ₂	EtOH, reflux, 24 h	10b	90–92 ^c	61
15	$\mathbf{2b} + C_3 F_7 CONHNH_2$	EtOH, reflux, 24 h	12b	50-52	47
16	<u>7b</u>	CHCl ₃ /P ₂ O ₅	13	_a	68
17	<u>8b</u>	CHCl ₃ /P ₂ O ₅	14	106-108	65
18	1 <u>2b</u>	CHCl ₃ /SOCl ₂ /py	15	144–146	66

^a Liquid at room temperature.

^b Product <u>9</u> is known compound, see [11].

^c Products <u>10a</u> and <u>10b</u> are known compounds, see [10], melting points were measured after recrystallization with petroleum and ethyl acetate.

this reaction mixture was refluxed in EtOH for 24 h, the solvent was evaporated, and the obtained crude product was purified by column chromatography to give the pure product. The reaction yields are shown in Table 2.

3.1.1. 5-Hydroxy-1-pentafluorophenyl-5-trifluoromethyl-4,5-dihydropyrazole, <u>5</u>

IR (ν_{max} , cm⁻¹): 3612 (s, O–H), 2955 (m, C–H), 1509 (s, C=N), 1199, 1152 (vs, C–F); ¹H NMR (90 MHz, (CD₃)₂CO) δ (ppm): 6.98 (s, ¹H, pyrazole 3-H), 3.28 (s, 2H pyrazole 4-H), 3.20 (br, 1H, OH); ¹⁹H NMR (56.4 MHz, (CD₃)₂CO) δ (ppm): -79.9 (s, CF₃); -142.9 (d, Ar–F, F2, F6), -155.5 (t, Ar–F, F-4), -164.9(t, Ar–F, F3, F5); MS (*m*/*z*, %): 320 (*M*⁺, 6.32), 319 (*M*⁺–H, 36.62), 302 (*M*⁺–H₂O, 6.81), 251 (*M*⁺– CF₃, 100.00), 181 (C₆F₅N⁺, 90.88), 167 (C₆F₅⁺, 36.18); HRMS for C₁₀H₄F₈N₂O: Calculated: 320.01959; Found: 320.02354.

3.1.1.1. Crystal structure analysis. $C_{10}H_4ON_2F_8$: MW = 320.14, monoclinic, space group p2₁/c (#14), a = 10.924 (4) Å, b = 9.437 (4) Å, c = 11.813 (4) Å, $\beta = 114.99(2)^{\circ}$, V = 1103.7 (7) Å³, Z = 4, $D_c = 1.927$ g/cm³, F(000) = 632.00. Radiation, Mo K α ($\lambda = 0.71069$ Å). Crystal dimension, 0.20 mm × 0.20 mm × 0.30 mm. Intensity data were collected at 20°C with a Ragaku AFC 7R diffractometer using graphite-monochromated Mo K α radiation ($\mu = 2.18$ cm⁻¹). A total of 2826 independent reflection were measured in the range $18.7 < 2\theta < 21.4^{\circ}$. The structure was solved by direct methods and referred using Fourier techniques. The nonhydrogen atoms were included but not refined. The final cycle of full matrix least-

square refinement was based on 1384 observed reflections $(I > 2.00\sigma(I))$ and 191 variable parameters. The final *R* and R_w value were 0.052 and 0.054, respectively. All calculations were performed using the teXsan crystallographic software package of Molecular Structure Corporation Table 1.

3.1.2. 5-Hydroxy-1-(2,3,5,6, tetrafluorophenyl)-5trifluoromethyl-4,5-dihydropyrazole, <u>6</u>

IR (ν_{max} , cm⁻¹): 3100 (m, O–H), 1510 (s, C=N), 1195, 1145 (vs, C–F); ¹H NMR (400 MHz,(CD₃)₂CO) δ (ppm): 7.57 (m, 1H, H–C₆F₄), 7.15 (s, 1H, pyrazole 3–H), 3.49 (d, 1H, J = 19 Hz, pyrazole 4–H), 3.33 (d, 1H, J = 19 Hz, pyrazole 4–H), 3.22 (br, 1H, OH); ¹⁹F NMR (56.4 MHz, CDCl₃ + (CD₃)₂CO) δ (ppm): -79.4 (s, CF₃); -140.8 (d, Ar–F, F2, F6), -143.4(d, Ar–F, F3, F5); MS (m/z, %): 302 (M^+ , 35.60), 285 (M^+ –OH, 6.68), 233 (M^+ –CF₃, 100.00), 163 (HC₆F₄N⁺, 49.42), 149 (HC₆F₄⁺, 13.75), 69 (CF₃⁺, 14.13); Elemental analyses for C₁₀H₅F₇N₂O: Anal. Calculated: N, 9.27%; H, 1.66%; C, 39.74%; Found: N, 9.16%; H, 1.71%; C, 39.69%.

3.1.3. 1-Heptafluorobutanoyl-5-hydroxy-5-trifluoromethyl-4,5-dihydropyrazole, <u>11</u>

IR (ν_{max} , cm⁻¹): 3400 (s, O–H), 1705 (s, C=O), 1490 (s, C=N), 1168 (vs, C–F); ¹H NMR (60 MHz, (CD₃)₂CO) δ (ppm): 7.30 (s, 1H, pyrazole 3-H), 5.10 (br, 1H, O–H), 3.46 (s, 2H, pyrazole 4-H) ¹⁹F NMR (56.4 MHz, (CD₃)₂CO) δ (ppm): -79.6 (s, CF₃), -80.3 (s, CF₃); -113.6 (s, CF₂), -124.3 (s, CF₂); MS (m/z, %): 350 (M^+ , 0.8), 333 (M^+ -OH, 16.23), 281 (M^+ -CF₃, 22.23), 169 (C₃F₇⁺, 36.18), 69 (CF₃⁺, 100.00); Elemental analyses for C₈H₄F₁₀N₂O₂: Anal.

Calculated: N, 8.00%; H, 1.14%; C, 27.43%; Found: N, 7.69%; H, 1.11%; C, 27.31%.

3.2. Reaction of $\underline{2}$ with hydrazine derivatives general procedure

3-Trifluoroacetyl-3,4-dihydro-2H-pyran or furan (5 mmol) was added into a 50 ml flask containing a solution of hydrazine (5 mmol) and EtOH (30 ml). This reaction mixture was refluxed in EtOH for 24 h, the solvent was evaporated and the crude product was purified by column chromatography.

3.2.1. 4-(3-Hydroxypropyl)-1-phenyl-5-trifluoromethyl-pyrazole, <u>4</u>

IR (v_{max} , cm⁻¹): 3394 (s, O–H), 2949 (m, C–H), 1597 (vs, C=C), 1499 (s, C=N), 1129, 1099 (vs, C–F); ¹H NMR (90 MHz, CDCl₃) δ (ppm): 7.70 (s, 1H, pyrazole 3-H), 7.57 (m, 5H, Ar–H), 3.73 (t, 2H, CH₂–O), 3.73 (br, 1H, OH), 2.85 (t, 2H, pyrazole–CH₂), 1.99 (m, 2H, CH₂CH₂); ¹⁹F NMR (56.4 MHz, CDCl₃) δ (ppm): –54.5 (s, CF₃); MS (m/z, %): 270 (M^+ , 68.31), 252 (M^+ –H₂O, 69.75), 225 (M^+ –CH₂CH₂OH, 100.00), 201 (M^+ –CF₃, 9.25), 183 (M^+ –CF₃–H₂O, 23.94); HRMS for C₁₃H₁₃F₃N₂O: Calculated: 270.0980; Found: 270.0988.

3.2.2. 5-Hydroxy-4-(2-hydroxyethyl)-1-pentafluorophenyl-5-trifluoromethyl-4,5-dihydropyrazole, <u>7a</u>

IR (ν_{max} , cm⁻¹): 3280 (s, O–H), 2800 (m, C–H), 1500 (s, C=N), 1180, 1168 (vs, C–F); ¹H NMR (60MHz, (CD₃)₂CO) δ (ppm): 6.86 (s, 1H, pyrazole 3-H), 3.55 (t, 2H, O–CH₂), 3.55 (br, 1H, OH), 2.85 (br, 1H, OH), 1.90 (m, 1H, pyrazole 4-H), 1.73 (m, 2H, pyrazole–CH₂); ¹⁹F NMR (56.4 MHz, (CD₃)₂CO) δ (ppm): -81.9 (s, CF₃); -144.8 (d, Ar–F, F2, F6), -157.8 (t, Ar–F, F4), -166.8 (t, Ar–F, F3, F5); MS (*m*/*z*, %): 364 (*M*⁺, 43.59), 346 (*M*⁺–H₂O, 29.34), 295 (*M*⁺–CF₃⁺, 100.00), 181 (C₆F₅N⁺, 73.62), 167 (C₆F₅⁺, 40.95), 69 (CF₃⁺, 56.12); Elemental analyses for C₁₂H₈F₈N₂O₂: Anal. Calculated: N, 7.69%; H, 2.20%; C, 39.56%; Found: N, 7.62%; H, 2.18%; C, 39.80%.

3.2.3. 5-Hydroxy-4-(3-hydroxypropyl)-1-pentafluorophenyl-5-trifluoromethyl-4,5-dihydro-pyrazole <u>7b</u>

IR (ν_{max} , cm⁻¹): 3370 (s, O–H), 2954 (m, C–H), 1522 (s, C=N), 1260, 1056 (vs, C–F); ¹H NMR (90 MHz, (CD₃)₂CO) δ (ppm): 6.65 (s, 1H, pyrazole 3-H), 3.14 (t, 2H, CH₂O), 3.14 (br, 1H, OH), 2.92 (br, 1H, OH), 1.55 (m, 1H, pyrazole 4-H), 1.35 (m, 4H, CH₂CH₂); ¹⁹F NMR (56.4 MHz, (CD₃)₂CO) δ (ppm): -80.8 (s, CF₃); -144.1 (d, Ar–F, F2, F6), -157.5 (t, Ar–F, F4), -166.4 (t, Ar–F, F3, F5); MS (*m*/*z*, %): 378 (*M*⁺, 4.15), 360 (*M*⁺–H₂O, 5.33), 309 (*M*⁺–CF₃, 39.02), 181 (C₆F₅N⁺, 40.70), 167 (C₆F₅⁺, 23.94), 41 (C₃H₅⁺, 100.00); Analysis for C₁₃H₁₀F₈N₂O₂: Calculated: N, 7.41%; H, 2.64%; C, 41.27%; Found: N, 7.08%; H, 2.41 %; C, 41.10%.

3.2.4. 5-Hydroxy-4-(2-hydroxyethyl)-1-(2,3,5,6-tetrafluorophenyl)-5-trifluoromethyl-4,5-dihydro-pyrazole, <u>8a</u>

IR (v_{max} , cm⁻¹): 3300 (s, O–H), 3050 (m, H–C₆F₄) 1500(s, C=N), 1180, 1145 (vs, C–F); ¹H NMR (400 MHz, (CD₃)₂CO) δ (ppm): 7.57 (m, 1H, H–C₆F₄), 7.21 (s, 1H, pyrazole 3-H), 3.80 (m, 2H, CH₂–O), 3.80 (br, 1H, –OH), 3.17 (br, 1H, OH), 2.20 (m, 1H, pyrazole 4-H), 2.12 (m, 2H, pyrazole–CH₂); ¹⁹F NMR (56.4 MHz, CDCl₃ + (CD₃)₂CO) δ (ppm): -80.8 (s, CF₃); -141.3 (d, Ar–F, F2, F6), -143.8 (s, Ar–F, F3, F5); MS (*m*/*z*, %): 346 (*M*⁺, 36.36), 328 (*M*⁺–H₂O, 24.74), 277 (*M*⁺– CF₃, 96.59), 259 (*M*⁺–CF₃–H₂O, 90.26), 163 (HC₆F₄N⁺, 100.00), 149 (HC₆F₄⁺, 46.65), 69 (CF₃⁺, 77.04); Elemental analyses for C₁₂H₉F₇N₂O₂: Anal. Calculated: N, 8.09%; H, 2.60%; C, 41.62%; Found: N, 8.02%; H, 2.56%; C, 41.78%.

3.2.5. 5-Hydroxy-4-(3-hydroxypropyl)-1-(2,3,5,6-tetrafluorophenyl)-5-trifluoromethyl-4,5-di-hydropyrazole, <u>8b</u>

IR (v_{max} , cm⁻¹): 3320 (s, O–H), 3050 (m, H–C₆F₄), 2990 (m, C–H), 1500 (s, C=N), 1185, 1155 (vs, C–F); ¹H NMR (60 MHz, CDCl₃ + (CD₃)₂CO) δ (ppm): 7.20 (m, 1H, H–C₆F₄), 6.94 (s, 1H, pyrazole 3-H), 3.73 (t, 2H, CH₂–O), 3.50 (br, 1H, –OH), 3.02 (br, 1H, OH), 2.01 (m, 1H, pyrazole 4-H), 1.83 (m, 4H, CH₂CH₂); ¹⁹F NMR (56.4 MHz, CDCl₃+ (CD₃)₂CO) δ (ppm): –79.8 (s, CF₃); –140.8 (t, Ar–F, F2, F6), –143.3 (s, Ar-F, F3, F5); MS (*m*/*z*, %): 360 (*M*⁺, 8.26), 342 (*M*⁺–H₂O, 8.91), 291 (*M*⁺–CF₃, 100.00), 273 (*M*⁺–CF₃–H₂O, 90.26), 163 (HC₆F₄N⁺, 75.34), 149 (HC₆F₄⁺, 29.71), 69 (CF₃⁺, 77.04), 41 (C₃H₅⁺, 24.97); Elemental analyses for C₁₃H₁₁F₇N₂O₂ Anal. Calculated: N, 7.78%; H, 3.06%; C, 43.33%; Found: N, 7.74%; H, 3.10%; C, 43.26%.

3.2.6. 4-(2-hydroxyethyl)-5-trifluoromethylpyrazole, 10a

IR (ν_{max} , cm⁻¹): 3230 (s, O–H), 3100 (s, N–H), 2779 (s, C–H), 1458 (s, C=N), 1140, 1050 (vs, C–F); ¹H NMR (60 MHz, CDCl₃ + (CD₃)₂CO) δ (ppm): 7.53 (s, 1H, pyrazole 3-H), 3.67 (t, 2H, CH₂O), 2.83 (t, 2H, pyrazole–CH₂), 2.13 (br, 1H, –OH); ¹⁹F NMR (56.4 MHz, CDCl₃+ (CD₃)₂CO) δ (ppm): -59.8 (s, CF₃); MS (*m*/*z*, %): 180 (*M*⁺, 13.2), 149 (*M*⁺–CH₂OH, 100.00), 111 (*M*⁺–CF₃, 2.01), 69 (CF₃⁺, 12.19); Elemental analyses for C₆H₇F₃N₂O: Anal. Calculated: N, 15.56%; H, 3.89%; C, 40.00%; Found: N, 15.36%; H, 3.89%; C, 40.25%.

3.2.7. 4-(3-Hydroxypropyl)-5-trifluoromethylpyrazole, 10b

IR (ν_{max} , cm⁻¹): 3100 (s, O–H, N–H), 2880 (s, C–H), 1480 (s, C=N), 1250, 1140 (vs, C–F); ¹H NMR (60 MHz, CDCl₃) δ (ppm): 7.79 (s, 1H, pyrazole 3-H), 4.06 (t, 2H, CH₂O), 3.09 (m, 2H, pyrazole–CH₂), 2.24 (m, 2H, CH₂CH₂), 1.53 (br, 1H, –OH); ¹⁹F NMR (56.4 MHz, CDCl₃) δ (ppm): –59.8 (s, CF₃); MS (*m*/*z*, %): 195 (*M*⁺ + 1, 28.19), 176 (*M*⁺–H₂O, 96.33), 149 (*M*⁺– CH₂CH₂OH, 100.00), 69 (CF₃⁺, 12.49); Elemental analyses for C₇H₉F₃N₂O: Anal. Calculated: N, 14.43%; H, 4.64%; C, 43.30%; Found: N, 14.26%; H, 4.59%; C, 43.09%.

3.2.8. 1-Heptafluorobutanoyl-5-hydroxy-4-(2-hydroxyethyl)-5-trifluoromethyl-4,5-dihydro-pyrazole, <u>12a</u>

IR (v_{max} , cm⁻¹): 3200 (s, O–H), 1705 (s, C=O), 1200, 1160 (vs, C–F); ¹H NMR (60 MHz, CD₃Cl + (CD₃)₂CO) δ (ppm): 7.90 (d, 1H, pyrazole 3-H), 4.00 (br, 1H, OH), 4.00 (t, 2H, CH₂O), 3.20 (m, 1H, pyrazole 4-H), 3.20 (br, 1H, OH), 2.10 (m, 2H, pyrazoleCH₂); ¹⁹F NMR (56.4 MHz, CD₃Cl + (CD₃)₂CO) δ (ppm): -80.6 (s, CF₃), -83.3 (s, CF₃); -120.6 (s, CF₂), -126.8 (s, CF₂); MS (*m*/*z*, %): 395 (*M*⁺ + 1, 4.22), 377 (*M*⁺-OH, 68.57), 280 (*M*⁺-CF₃-CH₂CH₂OH, 23.68), 169 (C₃F₇⁺, 12.58), 83 (C₃H₃N₂O⁺, 49.11), 69 (CF₃⁺, 77.48), 68 (C₂N₂O⁺, 100); Elemental analyses for C₁₀H₈F₁₀N₂O₃: Anal. Calculated: N, 7.11 %; H, 2.03%; C, 30.46%; Found: N, 7.10%; H, 2.11%; C, 30.17%.

3.2.9. 1-Heptafluorobutanoyl-5-hydroxy-4-(3-hydroxy-propyl)-5-trifluoromethyl-4,5-dihydro-pyrazole, **12b**

IR (ν_{max} , cm⁻¹): 3100 (s, O–H), 1710 (s, C=O), 1160, 1100 (vs, C–F); ¹H NMR (60 MHz, CD₃Cl) δ (ppm): 7.90 (d, 1H, pyrazole 3-H), 4.60 (br, 1H, O–H), 4.05 (m, 2H, CH₂O), 2.45 (m, 1H, OH), 2.30 (m, 1H, pyrazole 4-H), 1.95 (m, 4H, CH₂CH₂); ¹⁹F NMR (56.4 MHz, CD₃Cl) δ (ppm): -79.7 (s, CF₃), -83.2 (s, CF₃); -120.2 (s, CF₂), -125.8 (s, CF₂); MS (m/z, %): 408 (M^+ , 3.72), 391 (M^+ -OH, 24.52), 294 (M^+ -CF₃-CH₂CH₂OH, 8.62), 239 (M^+ -C₃F₇, 7.02), 169 (C₃F₇⁺, 36.18), 97 (C₄H₅N₂O⁺, 59.65), 69 (CF₃⁺, 100.00), 41 (C₃H₅⁺, 46.77); Elemental analyses for C₁₁H₁₀F₁₀N₂O₃: Anal. Calculated: N, 8.00%; H, 1.14%; C, 27.43%; Found: N, 7.69%; H, 1.11%; C, 27.31%.

3.3. General procedure for the preparation of fluorinated pyrazole derivatives by a dehydration process

At room temperature 1-substituted-5-(trifluoromethyl)-5hydroxy-4,5-dihydro pyrazole (2 mmol) was added into a 25 ml flask containing a mixture of P_2O_5 (2.5 mmol) and chloroform (15 ml). After reflux for 8 h, the residue was removed by filtration. The solvent was washed with water and dried with anhydrous Na_2SO_4 and evaporated. The crude product was purified by column chromatography.

3.3.1. 4-(3-Hydroxypropyl)-1-pentafluorophenyl-5-trifluoromethylpyrazole, <u>13</u>

IR (v_{max} , cm⁻¹): 3420 (s, O–H), 2950 (m, C–H), 1510 (s, N=H), 1255, 1050 (vs, C–F); ¹H NMR (60 MHz, CDCl₃) δ (ppm): 8.07 (s, 1H, pyrazole 3-H), 4.10 (t, 2H, CH₂O), 3.13 (m, 2H, pyrazole–CH₂), 2.30 (m, 2H, CH₂CH₂), 2.30 (br, 1H, OH); ¹⁹F NMR (56.4 MHz, CDCl₃) δ (ppm): –57.2 (s, CF₃); –144.7 (d, Ar–F, F2, F6), –149.3 (t, Ar–F, F4), –160.6 (t, Ar–F, F3, F5); MS (m/z, %): 360 (M^+ , 0.65), 342 (M^+ –H₂O, 100.00), 315 (M^+ –CH₂CH₂OH, 42.53), 273 (M^+ –H₂O–CF₃, 25.80), 167 (C₆F₅⁺, 5.96), 69 (CF₃⁺, 11.42); HRMS for C₁₃H₈F₈N₂O: Calculated: 360.05089; Found: 360.05306.

3.3.2. 4-(3-Hydroxypropyl)-1-(2,3,5,6-tetrafluorophenyl)-5-trifluoromethylpyrazole, <u>14</u>

IR (v_{max} , cm⁻¹): 3410 (s, O–H), 3070 (m, H–C₆F₄), 2980 (m, C–H), 1500 (s, C=N), 1184, 1139 (vs, C–F), ¹H NMR (60 MHz, CDCl₃) δ (ppm): 7.93 (s, 1H, pyrazole 3-H), 7.50 (m, 1H, H–C₆F₄), 3.30 (t, 2H, CH₂O), 2.96 (t, 2H, pyrazole–CH₂), 2.13 (m, 2H, CH₂CH₂), 2.13 (br, 1H, OH); ¹⁹F NMR (56.4 MHz, CDCl₃) δ (ppm): –61.8 (s, CF₃); –136.8 (t, Ar–F, F2, F6), –144.8 (s, Ar–F, F3, F5); MS (m/z, %): 342 (M^+ , 100.00), 324 (M^+ –H₂O, 1.34), 273 (M^+ –CF₃, 12.13), 163 (HC₆F₄N⁺, 25.94), 149 (HC₆F₄⁺, 28.01), 69 (CF₃⁺, 23.51); HRMS for C₁₃H₉F₇N₂O: Calculated: 342.06031; Found: 342.05654.

3.3.3. 4-(3-Hydroxypropyl)-1-heptafluorobutanoyl-5trifluoromethylpyrazole, <u>15</u>

IR (v_{max} , cm⁻¹): 3180, 3050 (m, =CH), 1700 (s, C=O), 1210, 1130 (vs, C–F); ¹H NMR (90 MHz, (CD₃)₂CO) δ (ppm): 8.20 (s, 1H, pyrazole 3-H), 3.90 (t, 2H, CH₂O), 2.60 (s, 1H, OH), 1.63 (m, 4H, CH₂CH₂); ¹⁹F NMR (56.4 MHz, CDCl₃) δ (ppm): -61.8 (s, CF₃), -79.4 (s, CF₃); -119.8 (s, CF₂), -126.1 (s, CF₂); MS (*m*/*z*, %): 391 (*M*⁺ + 1, 45.26), 390 (*M*⁺, 43.76), 177 (*M*⁺ + 1–C₃F₇CO–OH, 100.00), 169 (C₃F₇⁺, 21.30), 108 (*M*⁺ + 1–C₃F₇CO–OH–CF₃, 70.16), 69 (CF₃⁺, 54.29); HRMS for C₁₂H₈F₁₀O₂N₂: Calculated: 390.04261, Found: 390.04264.

Acknowledgements

The authors thank the National Natural Science Foundation of China (NNSFC) (No. 29872051) and Innovation Foundation of Chinese Academy of Sciences for financial support.

References

- M. Hudlicky, Chemistry of Organic Fluorine Compounds, Ellis Horwood, Chichester, 1992.
- [2] J.T. Welch, Tetrahedron 43 (1987) 3123.
- [3] R.E. Bank, Organofluorine Chemistry, Principles and Commercial Application, New York, 1994.
- [4] I.I. Gerus, M.G. Gorbunova, V.P. Kukhar, J. Fluorine Chem. 69 (1994) 195.
- [5] I.I. Gerus, S.I. Vdovenko, M.G. Gorbunova, V.P. Kukhar, Khim. Geterots. Soedin. 4 (1991) 502.
- [6] M. Soufyane, C. Mirand, J. Levy, Tetrahedron Lett. 34 (1993) 7737.
- [7] B.G. Jones, S.K. Branch, A.S. Thompson, M.D. Threadgill, J. Chem. Soc., Perkin Trans. 1 (1996) 2685.
- [8] S.Z. Zhu, G.L. Xu, C.Y. Qin, Q.L. Chu, Y. Xu, Monatsh. Chem. 130 (1999) 671.
- [9] M.E.F. Braibante, G. Clar, M.A.P. Martins, J. Heterocyclic Chem. 30 (1993) 1159.
- [10] S.P. Singh, D. Kumar, B.G. Jones, M.D. Threadgill, J. Fluorine Chem. 94 (1999) 199.
- [11] J.H. Atherton, R. Fields, J. Chem. Soc. C (1968) 1507.
- [12] M. Hojo, R. Masuda, Y. Kokuryo, H. Shioda, S. Matsuo, Chem. Lett. (1976) 499.
- [13] H. Yoshioka, C. Takayama, N. Mastuo, J. Synth. Org. Chem. Jpn. 42 (1984) 809.